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Polynomial GMDH Algorithms
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When solving the paranetric identification problem one nmust find the esti mates of pol yno-
m al nodel coefficients by processing a sanple of experinmental data.

The readers are, of course, sure that the nunber of points in the data sanple cannot be
snaller than the nunber of nenbers of the polynomal to be estimated. But this is incorrect
for iterative (or multi-row) identification algorithms where, instead of the conplete pol ynom -
al

§ =Gy X @Xs + - ayxy
one subjects to estimation only partial polynomals of the form
y=cx, - cix; (for xy =1},

where x. , x. is any pair of regressors taken fromthe regressor set Lys Loy eees x,,indicated
LTy 2 A

in the data sanple. The algebraic nmninumof data points for estimating the coefficients c.

t

and <. in the partial polynomals is two. Following this, we can obtain, by solving simltane-

ously the systemof partial equations the estinates of all the coefficients in the initial com
pl ete polynomial that has M+ 1 menbers. It is easy to showthat this "mracle" is valid under
ideal conditions, i.e., when the data are conplete and precise. Under actual practical condi-
tions it can also occur, but only with some degree of precision.

Using an iterative GVDH algorithm one can evaluate a polynomal that is linear in its co-
efficients and has about 1000 menbers froma sanple that contains on the order of 100 points
only. The conputation time on a BESM-6 conputer (107 operations/s) in this case does not ex-
ceed 3 hours ("freedomof choice" F = 3).

The iterative multi-row algorithmis explained by Fig. 1.

EXTERNAL CRTERFA CF TWD TYPES AND TWD BASI C APPROACHES

The application of external criteria at each iteration step with the aimof selecting only
F nost effective partial polynomals is a specific feature of GQWDH algorithnms. I n accordance
with the well-known D. Gabor paper on sequential decision making, the nunber F is called "free-
dom of choice" [1, 2].

External means that it is based on fresh information that has not been used for estinating
the coefficients., The data sanple is partitioned into two parts, Aand B, in order to cal cu-
late the so-called external regularity criterion

*From the Editorial Board. The Editorial Board disagrees with nmany of the statenents and
evaluations of the author of this paper, and publishes it to stimulate discussion, assunng
that the discussed issues are of interest to a broad circle of readers.
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Fig. 1. Iterative (milti-row GMDH algorithm 1)
first selection; 2) second selection; 3) third se-
lection, etc.; 4) data sanple.
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or the differential external consistency criterion

N
CN == XT (;4 _— 23)2» min,

i=1

where ¥ is the total nunber of points in the data sanple; B is the testing subset of points,
N=A+£5; ypis the output variable represented in data sanple B; y oY are the outputs of
t he rmdels with the structure that is subject to evaluation. v

Many nulti-loop systens with a large nunber of variables have special invariants: the sum
of specific variables is a constant nunber [3]. For exanple, in the sinplest case, the sum of
season averages equals the annual average: «+¢:+¢s+¢9:=Q Such invariants allow one to arrange
a bal ance of variable criterion

b, =Q; — (41 + 9% + 95+ g4),
N
BL= ¥ 5> min.

1:!

The bal ance of variables criterion BL and the consistency criterion CV can serve as exanpl es of
differential-type criteria that do not include information taken directly fromthe data sample,
Differential-type criteria are incorrect (in the sense of A N Tikhonov papers), They can
equal zero only for the unique optinmal nodel but also accidentally for sone '"false' ones. The
fal se "zeros" nmust be detected and elimnated using a special regularization (or redefinition)
procedure in order to find the uni que optimal nodel.

Al the criteria (about 50 proposals are known in addition to the informational-type cri-
teria) can be separated into two basic groups.

Accuracy type criteria require the choice of a nodel that is nost accurate on the given
data sanple. The regularity criterion can serve as an exanple of an accuracy type criterion.
These criteria inplenent a precision approach in nodeling by sorting.

D fference type criteria require the choice of a nodel that is the same for the two differ-
ent parts of the sanple. The consistency and bal ance of variables criteria can serve as exanpl es
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Fig. 2. Regressor ranking for selecting the opti-

mal ensenble: a) subjective nethod for setting the

threshol d; b) objective nethod (by the m ni mum of
an external criterion).

of difference type criteria that inplenent a newrobust approach in nodeling by sorting. Robust
means here insensitive to the choice of the sanple part that is used for nodeling.

THE OBJECTI VE NATURE CF THE CHO CE CF THE CPTI MAL MODEL STRUCTURE
ACCCRDI NG TO EXTERNAL CRITER A

External accuracy and differential type criteria have a very inportant feature. Wen the
conpl exity of the nodel structure (determned, for exanple, by the nunber of nmenbers of the poly--
nomal) is increased gradually during the sorting procedure, the external criteria pass through
their mninum The location of the criterion nmnimmindicates the optimal conplexity of the
nodel structure (the self-organization principle for optinal models). The mi ninumof the ex-
ternal criterion offers us the capability of objective choice of the nodel.

Internal criteria used in mathematics, for exanple, the root-nmean-square error cal cul ated
on all the sanple points; RSS (residual sumof error squares), only decrease w th increasing
nodel conplexity. Here the rule holds: the nore conplex the nodel, the nore accurate it is.
The only way out under such conditions is to set some threshold ("confidence interval") in order
to stop the sorting procedure on sone conplexity level (Fg, 2). ne has to be experienced and
to have deep know edge of the nodel ed object in order to select the threshold value correctly.
But there is no other way out if one does not want to use nmet hods of nopdel self-organization
according to external criteria.

EXTRAPCLATION CF THE LOCUS G THE MN MA IN CRDER TO FIND THE
PHYSI CAL MCDEL
MEASURE CF THE NO SE IMMINTY OF THE CR TERI ON

A conput er chooses (in the presence of interference) under-conplicated nodels as the opti--
mal ones. However, the problemof finding the full physical nmobdel in nmodeling by sorting re-
mains. It can be solved by extrapolating the locus of the mnima (LM of the external criteri--
on, as shown in Fig. 3. The point O corresponds to the physical nodel. |t can be determn ned
at the intersection of the LMapproxi mation and the abscissaaxis. It is sufficient toadd some
srmal |l portions of noise to the data sanple in order to find some points of the LMin order to
approxi mate and extrapolate it. The nagnitude of eO is a measure of the noise immunity of the
criterion.

Vector, matrix and tensor forns of the nodel. Algorithns for systemanalysis (0SA). The
sane object can be described by a vector, a nmatrix or a tensor model, The formthat provides
the deepest mininumof the criterion is the best, The conputer chooses the nodel form,

In this way one can solve the humanly very difficult problens of selecting the limts of
the nodel ing domain. The conputer indicates which elenents must be included in the nodel and
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Fig. 3. Extrapolation of the LM for finding the structure
of a physical model: a) for two models, Sl’ SZ; b) for

seven models, Sl’ csvus 57; 8 — dnterference level (6 <

02).

Fig. 4. Results of a computational experiment of sorting
systems of difference equations for interference levels §
= 0.2 and 9 = 0.6,
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Fig. 5. Ranking of explicit, (a), and inplicit, (b),
tenplates 5, a method for teaching tenplates by a data
sample,

whi ch nust be excluded. A special sorting al gorithmwhich solves this problemis called the
bj ective SystemAnalysis (C88) algorithm [4]. Inplicit tenplates (Figs. 4 and 5), i.e., sys-
tems of difference equations, are subject to sorting in this algorithm,

WHY IT IS I MPGSSI BLE TO APPLY EXI STI NG GENERAL | DENTI FI CATI CN THECRY
TO THE SCLUTI ON GF PRCBLEMS |N MZDELI NG BY SCRTI NG

The practice of nodeling by sorting poses many special questions of theoretical nature.
For exanple, does the iterative procedure of sorting nodels converge in general? |Is the conver-
gence guaranteed only for internal criteria (internal convergence) or also for external cri-
teria (external convergence)? Wich nmethod of partitioning the data sanple into two sub-sanples



A and B is optimal ? Under what conditions is uninodality of the external criteria guaranteed
and what order of ranking nodel s-candi dates is necessary for attaining the unique mnimn? How
great is the noise immunity of the sorting procedure?

There is a |large nunber of papers on the general identification theory, expecially for the
pur poses of automatic control [5]. But there are no answers there to the questions stated in
the preceding. A special theory of nodeling by sorting has to be devel oped. The situation can
be explained as follows: identification theory has been devel oped in a purely deductive way.
Al the efforts of this devel opment were aimed at the search for unbiased nodel s, and, in par-

ticular, for the sinplest unbiased mnimal-conplexity physical model. The practice of mnodel
sorting shows that a conputer, controlled by external criteria, chooses under-conplicated nodel s
that are optinal for approximation as well as the prediction. |In presence of interference, the

opti mal nodel nust have a sinpler structure than its physical counterpart.

W can find a simlar assertion in communications theory: there, as the signal noise in-
creases, the communications systembecones sinpler (Shannon's second theorem for noisy comuni-
cations channels).

A human cannot invent and propose under-conplicated nodel s for prediction, this is excluded
psychologically. He or she can consider only the application of physical or over-conplicated
nodel s, but not of under-conplicated ones. Can a hunman agree to descri be pendul umoscillations
by only two or one addend of the full three-nmenber equation of oscillations? O course not! But
sorting shows that under noisy conditions, it is useful to exclude sone nmenbers of the conplete
equati on of the physical nodel .

TWO METHODS FOR DEVELCPI NG SORTI NG METHODS FCR MCDELI NG

The special theory of sorting nmethods is developed in two ways: mainly, by using conputa-
tional experinments (that are repeated many tines to increase their credibility), or, for sone
probl ems, by using ordinary anal ytic methods.

VW will consider the basic results of the analytic investigations,

Convergence of iterative GWDH algorithns. The proof of the convergence of the iterative
procedure inQGHal gorithms [6, 7] to a point determ nedby the mninumof the sorting criterion
is an obvious result of analytic research in its general form

The unimodal nature of the external criterion characteristic. It has been shown anal yti-
cally that if the data sanple is very large, then the '"criterion - nbdel conplexity" character-
istic is uninodal. In stochastic problens, uninodality is guaranteed for the nathematical ex-

pectation of the criterion.

Conput ati onal experinents show that uninodality is achieved al so when the nodel s- candi dat es
are sorted in groups (clusters). At the first step one can use the entire information that is
contained in any single colum of the sanple, at the second step one can use all the information
that is contained in any two colums of the data sanple, etc. The best npdels of each step form
the uni nodal characteristic.

Wien nodeling in the formof difference equations, this rule means that inplicit tenplates
of the equations becone nore complex gradually (Fg 5).

Conput ati onal experiments have denonstrated the advantage of the reverse sorting of tem
plates. First, the nmost conplex tenplate is evaluated, then a sinpler one, etc. It has been
noted that uninodality is lost very often for the sinplest tenplates ("first-roweffect'),
Reverse sorting excludes this effect because the sorting procedure stops as soon as the crite-
rion mininumstarts to increase. Experinents have shown that uninodality is achieved also for
short sanples. Theoreticians cannot tell us yet when it appears.

THE PARAMETRI C | DENTI FI CATION PRCBLEM ~ NON- PARAMETR C MODELS

The least squares nethod (LSV) is applied to the estination of the coefficients of polyno-
mal nodels. But it is known that it yields optinmal unbiased estinmates only for a full nunber
of regressors and when interference acts only on the output variable. In iterative GVDH al go-
rithns the set of variables changes in each step. Under such conditions it is better to use
orthogonal polynonmials that are optimal when the interference affects all the regressors iden-
tically. A few sorting algorithms with orthogonal partial descriptions have been proposed [8].

"It has been shown theoretically that when the interference variance can be measured, it is
best to apply minimax estimates of the coefficients [9].

However, the possibility of excluding the entire problemexists in nmodeling by sorting me-
thods. Mny algorithns are known in which not polynomals but, for exanple, Bayes formulas [10],
correlation functions [11], or Markov chains [12, 13] are subject to sorting. Very good practi-
cal results are shown in papers devoted to non-paranetric nethods of nodel sorting. For exanple,
the pollution field in Quinea Bay has been forecast nore than a year in advance and proved to be
very accurate [14].




Pol ynom al GMDH al gorithns are effective, but non-paranetric ones promse to be even nore
effective. Thus, polynonmi al nodels provide accurate forecasting of eleven variables in the
nmodel of the devel opment of the econony of the GDR  The renaining 15 variabl es are forecast
usi ng non-paranetric progranms based on the search for an analog in prehistory {10].

THE PROBLEM CF PARTI TI ONING THE DATA SAMPLE | NTO SUBSAMPLES A AND B.
ASSOCI ATION WTH THE THECRY COF | NSTRUMENTAL VAR ABLES

Partitioning the data sanple into two subsamples, A and B, is one of the methods for cal-

culating external criteria. ne sets A:%N, B:%N, for the regularity criterion, and A = B for
the consistency criterion. The difference between subsanples A and B can be neasured using
anal ysis of variance. It is easy to show that in nodeling subsanples A and B nust differ from
each other as nuch as possible. This guarantees a fast increase of the "criterion - nodel com
pl exity" characteristic and, consequently, the deepest m ninum

Changi ng the content ("pouring over'") of points in subsanples A and B is one of the nethods
of obtaining a unique mninum (the regularization method), Adding slight noise to the initial
data sanple is another nethod.

It has been shown theoretically that when the data sample is full and precise (no interfer-
ence) , all the differential-type criteria (i.e., the consistency criterion, the bal ance of vari-
ables criterion, etc.) do not work [l14]. This neans that the nurmber of mnima or "false" zeros
is too large. Differential-type criteria can work (i.e., provide the unique true mnimn) only
when (1) there is interference in the data sanple or the nunber of regressors if inconplete;
and (20 subsanples A and B differ in their variances.

The theory of instrumental variables yields a new Idea for nodeling by sorting. |Instead
of partitioning the sanple, it is better to apply tw different nethods for obtaining the in-
strumental variables and conpare the results. The difference between the two instrumental vari-
ables is zero for the optimal nmodel. But instrumental variables obtained in this way nmust be
based on different informational bases. Quantization of a data sanple into two different nunbers
of levels (ranks) and comparison of results [10] can serve as an exanpl e.

DESCRI PTION OF A MDD FI ED OSA ALGCR THM THAT DOES NOT REQUI RE
THE DATA SAWLE TO BE PARTITIONED INTO TWD PARTS

The objective is a choice of a systemof difference equations that describes an object the
data about which are represented by an I x M-element sanple of measurements (¥is the nunber of
observation points, Mis the nunber of variables or attributes. The output variables are not
i ndicated a priori in the sanple; they are found by the algorithmas a consequence of choosing
the systemof equations. The set of systemcandidates is sorted according to two criteria. The
opti mal systemof difference equations nmust correspond to the mninumof the consistency crite-
rion and satisfy the threshold value of the short-termprediction (or variation) criterion
AC=82<1.0.

Block 1. Construction of the auxiliary sanples A and B of two instrunmental variables. To
avoid the partitioning of the sanple into tw parts, one forms two sanples A and B by quanti z-
ing the data of the basic sanple (except for the points of a small testing sanple C). Sanple A
is obtained by quantizing the data of the initial sanple to Nlevels. Sanple B is obtained by
quantizing it to N2 levels (having nultiplied the data by the factor of 2).

Many ot her proposals for formng two instrunental variables for solving the criterion (see,
for exanmple, [15], p. 16) are known. The use of various Wl sh functions is a pronising approach.
The consistency criterion (in a conbinatorial GWH algorithn) is determned by the difference
in the outputs of two nodels constructed on the instrumental variables:

1
tN=v—¢
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(x4 — xg); — min.

A Rols

.
[

To calculate the criterion, one has to deternine the nodels on sanples A and B that are obtained
by the indicated nethod.

Bl ock 2. Determnation of the structure of the polynomal difference equations according
to the GVDH conbinatorial algorithmand filtering out those which carry disinformation (instead
of prediction). The following conplete polynonmials that take into account two del ayed argunents
(i,j,p,r,s are the indices of the variables) are subject to the sorting.



The first-row polynomial
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The fourth-row polynomial
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e uses these conpl ete polynomals to find, according to the conbinatorial GMDH al gorithm
(wth the consistency criterion CN » nmn indicated in the preceding), the optinmal nodels of

the first, second, etc.,rows for each of the variables. These nbdels are checked to the con--
dition AC=8>< 1.0, where

c c
2 . " A. 2\ >
82 = \T' (¥, — ,\i)*/}l_J (x;, — x,)%

Al the non-optinmal nodels as well as the nodels that do not satisfy the threshold in the pre-
cision of their short-termprediction are excluded fromfurther consideration. Systens of
equations are formed further only frompolynomals that are optimal for each variable and that
have passed the threshold test. This reduces drastically the volune of sorting.

Bl ock 3. Ceneration of systens of equations and eval uating themaccording to the system

consistency criterion. Systens sorting is reversive, i.e., it starts at the nost conplex sys-

tem The nunber of systens that are subject to evaluation according to the systemcriterion
o 1 2 3 . _ .

CZVSYST > . min is equal to ( 7 ¢ W and C M for the first, second and third rows, respectively,

Systens of the fifth row of the selection have the follow ng conpl ete descriptions (only
opti mal pol ynom als, chosen according to the conbinatorial algorithm that contain 16 addends
participate):

Xy = F; (@i 1y%i0—0) %0 % jir—1)¥ jue—2) X piiy¥p (r—1) ¥ pi-- 25 X
X Xy Er (b Yor (ke 2) X sy s (et Y si—2))

ey = [ 00X 1y F i) jte— )% jtrm2)Ep () ¥ pihet ¥ pisi—2y 7

sy == F o (@0% i ¥ ick—ty¥ ity i) ® )X fhm 2y % ptty ¥ pth— 1) ¥t - )

XX Ry Fr (e Yo (ke 2) X sh—1) ¥ s(k—y)-

Al the systens, the nunber of whichis CSM, are eval uated according to the consistency system

criterion of the form




1

C"\'syst - ?(CN' G CN, s CNG) — min,

and the fifth-row optimal system is selected. 4
Next, the systems of the fourth selection row (their number is ¢ M) have a complete de-

scription that contains 13 addends. All the systems {that have four equations) are evaluated
according to the system criterion of the form

CNSyst = % (CN{-- CNy--- ... +CNy)—min

The optimal fourth-row system is selected, etc. The characteristic CNSYST = f(s), where s is
the number of equations, is constructed, etc.

Reduction of the sorting volume, The properties of many objects allow one to apply the
following method for a significant reduction of the sorting velume. In the fourth, third, second
and first rows (reverse counting of the rows) of selection one sorts only the polynomials (equa-
tions) that turned out to be optimal in the fifth row, i.e., only five equations (m = 5 with

m << M), In the fourth row one sorts 04, in the third, C3 in the second, Cz = 10 and in the

5 5° 5
, 1 ,
first, 05 = 5 systems of equations.
We satisfy ourselves that the sorting does not require a joint solution of the system of
equations.

Experimental confirmation of the adequacy law by multiple application of the 0SA algorithm
when reducing the variables set, The number of equations in the optimal system found by the

OSA algorithm is an index of the degree to which the modeled object is blurred.

Let a data sample that contains ¥ = 25 variables be given and let us find, by using the 0SA
algorithm, the optimal system from a number of equations with the output variables Tgs Tyos
Ly3s T gs Loy These variables are the least "blurred" and are predicted well by difference
polynomial equations. We eliminate from the sample the found "detail" variables and repeat the
OSA algorithm, We find that the optimal system contains only four equations with the output
variables Lys Lgs x4 Sy But the minimum of the system criterion increased (Fig. 6) and

moved to the left.

We eliminate now the 9 indicated variables from the sample and repeat the application of
the 0SA algorithm. We find that the optimal system contains only three equations with the out-
put variables xs, x6, xll' The minimum of the criterion moved even farther to the left, etc,

Such a shift of the minimum of the system criterion confirms the adequacy law which asserts
that for more blurred systems the optimal description (model) must also be more blurred, i.e.,
must have a smaller number of equations.
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Fig. 6. Results of sorting by the OSA al gorithm

Wi th subsequent elinination of |ess "blurred" vari-

ables. Processing a sanple that contains: 1) 25

variables; 2) 20 variables; 3) 16 variables; 4) 13

variables; 5) 11 variables. The degree to which the

object is blurred increases, while the nunber of
equations in the opti mal nodel decreases
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Fig. 7. Four positions of the '"sliding wi ndow' and

the correspondi ng four clusterizations which denon-

strate that the variety (nunber of clusters) de-
creases fromfour to three.

SELECTING THE DEGREE OF BLURRI NG (FUZZINESS) CF THE DESCR PTI ON
I NDI CATI VE SYSTEMVS

The nore conpl ex the object, the less detail ed nust the nat henatical |anguage of planning,
nodel i ng and control be. Blurred nodels turned out to be successful for nedical diagnostics,
for ecology and for economcs [10].

Indicative, the termadopted in econom cs, describes systens in which the degree of blurring
of the information signals is optimzed, i.e., selected at the optimal level. A conbined system
of the future will include all the three possible nethods for the control of economcs: direct
pl anning, indicative planning, and free market. The planning and control signals in indicative
systens are blurred. For exanple, the production of a factory is planned using a "fork" between
the mninmal and maxinal levels. Each local factory will be given some freedomof choice. In-

di cative planning reduces the volunme of infornation that is processed in the central planning
organizations.

In anal ogy with econonics, indicative systens of nodeling, clusterization, and control can
be defined as non-Godel systens, i.e., systenms without set-point elements (wthout standards)
in which the degree of blurring in the information processes |anguage is optimzed. Instead of
an external specification, one has to specify only the ratio of variables, which is a nore blurred
information than the specification of concrete values for each of them |In nmany cases the ratio
is known a priori; there is no need to consult the experts. This nmeans that the conputer be-
cones an independent arbiter in scientific debates on problenms of nodeling, clusterization, di-
agnostics, and pattern recognition [10].

SCRTI NG METHCDS GF MCDELI NG AND CLUSTER ZATI ON CF DATA CBTAI NED
IN A "SLIDNG WNDOWV"  PRCBLEMS CF LONG TERM PREDI CTI ON

Prof. V. V. Nalinmov insists in [14] that predictions for biological, ecological, econonic
and social systens are possible only in a blurred | anguage. The nore blurred the mat hemati cal
| anguage of predictionis the longer is its maxi mumachi evabl e antici pation tine.

He proposed a very blurred "pattern-analysis' | anguage (or two-conponent orthogonal pro-
jection of data sanple points) as an algorithmfor long-termprediction [16].

Qusterizations that are used instead of polynom al equations are also a method of naking
the mathematical description less detailed or nore blurred. Sorting algorithms of fer another
possibility: to track clusterizations obtained in a "sliding window that noves along the data
sanple on the time axis.

For exanple, the data sanple for the ecosystem of Lake Baykal contains neasurenents over the
interval of 50 years (Fg 7). Myving a 10-year wide sliding window, we can obtain 40 cluster-
ization forns used to track how the ecol ogi cal systemvaries in order to predict its further
devel opment. The |ongest anticipation time of a prediction is obtained w thout using precise
differential equations and their difference analogs. The objective clusterization of the sanple
data into some nunber of classes is used to calculate the graph of the probability of transi-
tion fromone class to the other, which nakes it possible to find an analog of the current state
of the object in prehistory and, consequently, to indicate the long-termprediction. Thus, the
followi ng |ong-term prediction scheme should be considered prospective: (D clusterization of
the data sanpl e for a nunber of positions of the "sliding window (Fg. 7); (2 formation of the




graph of canonical coefficients of the pairwi se correlation of separate clusterizations; and
(3 selection of an analog for the current clusterization and prediction according to the ana-
log or the group anal ogs nethod [10].

SOME DI SCOVERI ES OF MODELING BY SCRTI NG

Sorting nethods, being experinmental, reveal for us many unexpected facts. It has already
been indicated in the preceding that only sorting conputational experiments taught us to find
opti mal nodel s anong under-conpl i cated ones.

They also taught us how to build indicative (objective) systens w thout human-control |l ed
set - poi nt devi ces.

If a data sample is sufficiently representative, then the design of an experinent becones
a probl emof selecting the optimal collection of variables and of elimnating sone of the points
indicated in the sanple. The first experinents in sorting ensenbles of attributes have shown
that the sanme mninal value of the criterion corresponds to a nunber of various ensenbles.
There is no unique optimal ensenble [10].

Not less inportant is the lesson |earned from the "sliding wi ndow' experinents. It turned
out that sone conpl ex objects nmust be described by a few different systens of equations that
are used sequentially, depending on the initial conditions. This is newin mathenmatical phy-
sics, where each object has a single mathematical description.

For exanple, it is know that the weather at each point of the at nbsphere can be descri bed
by a systemof four differential equations [l7]. Having very long sanples of precise neasure-
nments, one can find the structure of the matrix nmodel of the local weather. But surprising
things begin to occur only when we investigate various positions of the "sliding w ndow in
time [19]. It turns out that the structure of the matrix nodel varies depending on the w ndow
position, sonetinmes repeating its previous forns. (ne can organize the clusterization of the
weat her matrix nodels and construct a probability graph for its prediction.

Conclusion. The theory of GVDH sorting nmethods can be presented as a continuous process
of theoretical explanation of experinental results of sorting nodels or clusterizations obtained
by a conputer.

To speed up the process, both the conputational experinents and the theoretical interpreta-
tion nmust be concentrated in the hands of a single researcher or a group of researchers. Lack
of unity of theory and practice slows down the devel opment process of the GVDH and causes the
appearance of papers that deserve criticism (both fromthe experinmental and the theoretical
poi nts of view).

Testing exanple. Let a nodel be sSpecified in the formof two differential equat i ons

dx, dx,
i = —0.5 and Gl = 1.0
or their two difference analogs xu = tuo)y = 0.5 and xyy =4y + 1.0 with the initial condi-
ditions f = 0, k = 0, ®p = 10, xy = 0. Using the difference equations, one can form the follow-
ing sample of measurement data:
E C 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20

x; 109,520 8.58 8.0 7.5 7.0 6,5 6.0 5.5 5.0 4.5 4.0 3.5 3.02.52.0 1.5 1.00.5 ©
3w 01 23 45 6 7 8 9 10 11 12 13 14 1516 17 18 10 20

The problem consists of recomstructing the initial difference equations using only the

sample data,
Solution. 1. We discretize the variables at ¥ = 20 levels and find sub-sample A (first

instrumental variable):

x==20 19 18 17 16 15 4 13 12 Il 10 9 8 7 6 O 1 3 ? !
=1 2 3 4 5 6 7 8 9 10 1t 12 13 t4 15 16 17 18 19 20.

2. We discretize the variables at N/2 = 10 levels and find sub~sample B (second instru~—
mental variable):



x;==20 20 18 18 16 16 14 14 12 12 10 10 % & 6 6 4 4 2 2
X,=2 2 4 4 6 6 8 8 10 10 12 i> 14 14 16 16 1& 18 20 20.

VW | ook for nodels of the following full form

iy 7 Qo Xy T TaXogy - AaXag )t

Koy 77 Ol byXageyy T ba¥ g i 62Xy gy

3. Conbinatorial algorithm Fi ft een nodel s-candi dates in which sone of the coefficients
are zero and the others are deternmined by the LSM (coefficientsw th index A by using sub-sanple
Ay, with index B, by using sub-sanple 5) are subjected to sorting. W calculate the consistency
criterion by the squares of coefficient differences:

CNA = l r:1— [(anA — dgp)* - (014 — ”13)2 -i (‘72_4 — )7 - (@34 — 1133)2]

1 a 2 T 21
CNg = V ?[(bo,q—bng)“*i'(bm*bm)‘ < (Bay — byp)? - ling 3 — b3p)?L

{
CN =5 (CN 4+ CNp).

syst

The evaluations of the criteria are given in the table.

The systemcriterion is zero only for the eleventh nodel. W satisfy ourselves that the
probl em of nodel reconstruction by using sorting of two instrunental variables has been sol ved
correctly. The actual nodel has been reconstructed independently by a conputer froma sanple
of observations without detailed instruction by a human expert. The human only specified the
criterion for sorting the nodel s-candidates by the m ni nrumof which the nodel has been found.
No threshol d values (nor confidence intervals) were needed. The exanple denonstrates a direc-
tion for creating an independent "artificial intelligence'" that does not require cues froma
human when making a decision and that often argues with the person.

No.of Val ues of coefficients

Model | conpo- Criterion of non-contradictoriness
No. nents a5 a, a, a, (with respect to coefficients)
m
: PR = VI - LM CN, >0 OO0 CNgyge >0
2 3 o o I M om0 oNp>0 o CNgy >0
3 3 I}gl\l}lll (0) tgm tgl\\j: CNa>0 CNg>0 CNsyst >0
4 3 oM 0 LM on im0 N0 CNgyg >0
5 3 LW B 9 cvam0 N0 O >0
6 2 o S LM CN >0 N0 CNgygy >0
8 2 L0 S S a0 V>0 O >0
9 2 ° 2 LSM LS oNy>0 N0 Ny >0
10 2 o0 0 LM CNp>0  CNp>0 NGy >0
1 2 o3 O CN4j=0  CNp=0 CNgyo =0
Computer choice
: 12 L law 8 8 0 Ny>0  CNg>o0 CNgysr >0
13 L o M o S cvym0 cNg>o0 CNgysy >0
u ! 5 o s 0 CN,>0  CNg>0 CNgyge >0
15 ! S 9 9 M CNy>0  CNp>o0 CNgyer >0
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